

Angewandte Corrigendum

In this communication, the interpretation of ESI-MS data, obtained at low resolution, was misled. On page 11 448, the section around Figure 1 thus should read as follows:

"An ESI-MS analysis at low resolution (in the positive mode) for a 1:1 mixture of benzamide 1 and $AuCl_3$ in CD_3CN at room temperature (immediately after mixing) showed intensive peaks at m/z 548 and 550 (Figure 1), which may be attributed to the divinylgold species 9 and its ^{37}Cl derivative, respectively.

Figure 1. Divinylgold species **9** suggested but not confirmed by low resolution ESI-MS. In the negative ESI-MS mode at low resolution, the cluster peaks observed at m/z 460 and 462 were attributed to **A** ($C_{10}H_8AuCl_3NO$, exact mass 459.93) and its ³⁷Cl derivative. Both data sets also suggested the formation of the mono- and divinylgold species."

In the Supporting Information, page 17, the deuterium in the chemical structures suggested for the peaks at m/z 461 and 463 (lower spectrum) should be replaced with hydrogen, and the m/z 461 and 463 values should be counted as m/z 460 and 462, based on the fact that the reference peak $\mathrm{AuCll_4}^-$ (m/z 336.8) appears at m/z 337.9. Accordingly, the peak at m/z 502.0 attributed to $\mathrm{A}(\mathrm{CH_3CN})$ should be counted as 501.0. Also, the assignment of Au-1 for the peak at m/z 520 should be replaced by "unknown structure".

The ESI-MS data were obtained for the samples prepared in CD_3CN , as in the case of the NMR analysis samples. The ESI-MS analyses were carried out within 10 min of the sample preparation. Before injecting the sample, the turbospray was washed with CH_3CN carefully; hence, residual CH_3CN can be mixed with the sample solution. However, due to the low resolution and a calibration error, numeric errors in the ESI-MS mass were observed, as noted for the reference peak $AuCl_4^-$.

Characterization of Vinylgold Intermediates: Gold-Mediated Cyclization of Acetylenic Amides

O. A. Egorova, H. Seo, Y. Kim, D. Moon, Y. M. Rhee, K. H. Ahn* ___ **11446–11450**

Angew. Chem. Int. Ed. 2011, 50

DOI: 10.1002/anie.201106132